Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(6): 570-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917011

RESUMO

The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.


Assuntos
Ascomicetos , Hordeum , RNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Hordeum/microbiologia , RNA de Transferência , Interferência de RNA , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
2.
Mol Ecol ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862075

RESUMO

The powdery mildew fungi (Erysiphaceae) are globally distributed plant pathogens with a range of more than 10,000 plant hosts. In this review, we discuss the long- and short-term evolution of these obligate biotrophic fungi and outline their diversity with respect to morphology, lifestyle, and host range. We highlight their remarkable ability to rapidly overcome plant immunity, evolve fungicide resistance, and broaden their host range, for example, through adaptation and hybridization. Recent advances in genomics and proteomics, particularly in cereal powdery mildews (genus Blumeria), provided first insights into mechanisms of genomic adaptation in these fungi. Transposable elements play key roles in shaping their genomes, where even close relatives exhibit diversified patterns of recent and ongoing transposon activity. These transposons are ubiquitously distributed in the powdery mildew genomes, resulting in a highly adaptive genome architecture lacking obvious regions of conserved gene space. Transposons can also be neofunctionalized to encode novel virulence factors, particularly candidate secreted effector proteins, which may undermine the plant immune system. In cereals like barley and wheat, some of these effectors are recognized by plant immune receptors encoded by resistance genes with numerous allelic variants. These effectors determine incompatibility ("avirulence") and evolve rapidly through sequence diversification and copy number variation. Altogether, powdery mildew fungi possess plastic genomes that enable their fast evolutionary adaptation towards overcoming plant immunity, host barriers, and chemical stress such as fungicides, foreshadowing future outbreaks, host range shifts and expansions as well as potential pandemics by these pathogens.

3.
Front Microbiol ; 13: 809940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283825

RESUMO

Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two Arabidopsis mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.

4.
Nat Plants ; 8(3): 200-201, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210560

Assuntos
Pão
5.
Plant Physiol ; 183(1): 385-398, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123042

RESUMO

Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163-185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60.


Assuntos
Hordeum/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ribossomos/metabolismo , Domínio Catalítico
6.
PLoS Pathog ; 15(3): e1007620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856238

RESUMO

The biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals and grasses. We present the first crystal structure of a B. graminis effector of pathogenicity (CSEP0064/BEC1054), demonstrating it has a ribonuclease (RNase)-like fold. This effector is part of a group of RNase-like proteins (termed RALPHs) which comprise the largest set of secreted effector candidates within the B. graminis genomes. Their exceptional abundance suggests they play crucial functions during pathogenesis. We show that transgenic expression of RALPH CSEP0064/BEC1054 increases susceptibility to infection in both monocotyledonous and dicotyledonous plants. CSEP0064/BEC1054 interacts in planta with the pathogenesis-related protein PR10. The effector protein associates with total RNA and weakly with DNA. Methyl jasmonate (MeJA) levels modulate susceptibility to aniline-induced host RNA fragmentation. In planta expression of CSEP0064/BEC1054 reduces the formation of this RNA fragment. We propose CSEP0064/BEC1054 is a pseudoenzyme that binds to host ribosomes, thereby inhibiting the action of plant ribosome-inactivating proteins (RIPs) that would otherwise lead to host cell death, an unviable interaction and demise of the fungus.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/imunologia , Plantas/imunologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Conformação Proteica , RNA de Plantas/genética , RNA Ribossômico/genética , Homologia de Sequência
7.
Microbiologyopen ; 8(5): e00730, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30311441

RESUMO

Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin-mediated endocytosis. We created mutants of the TORC1 pathway, alpha-arrestins, and eisosome-related genes. Our results demonstrate that the TORC1-Npr1-Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200-fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.


Assuntos
Técnicas de Transferência de Genes , Genética Microbiana/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Transformação Genética , Aminoácidos/metabolismo , Meios de Cultura/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
Bio Protoc ; 9(14): e3299, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654812

RESUMO

Blumeria graminis is a fungus that causes powdery mildews on grasses, such as barley. Investigations of this pathogen present many challenges due to its obligate biotrophic nature. This means that the fungus can only grow in the presence of a living host plant. B. graminis forms epiphytic mycelia on the plant surface and feeding organs (haustoria) inside the epidermal cells of the host plant. Therefore, it is difficult to separate the fungus from plant tissues. This protocol shows how to obtain different fungal structures from powdery mildew infected barley leaves. The epiphytic mycelia including conidia and conidiophores can be separated after immersing the infected leaves into 5% cellulose acetate dissolved in acetone, and peeling off the cellulose acetate membrane. Then, the haustoria are isolated from dissected epidermis after cellulase degradation of plant cell walls. The isolated haustoria remain intact with few plant impurities. The haustoria may be visualized by epifluorescence microscopy after staining with the chitin-specific dye WGA-Alexa Fluor 488. Finally, dissected material can be either processed immediately or kept at -80 °C for long-term storage for studies on gene expression and protein identification, for example by mass spectrometry.

9.
BMC Genomics ; 19(1): 381, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788921

RESUMO

BACKGROUND: Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). RESULTS: The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. CONCLUSIONS: The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a "one-speed" genome that differs in its architecture and (co-)evolutionary pattern from the "two-speed" genomes reported for several other filamentous phytopathogens.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Elementos de DNA Transponíveis/genética , Genoma Fúngico/genética , Hordeum/microbiologia , Especificidade de Hospedeiro/genética , Doenças das Plantas/microbiologia , Variações do Número de Cópias de DNA , Duplicação Gênica , Perfilação da Expressão Gênica , Filogenia
11.
Curr Opin Microbiol ; 46: 26-33, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29455142

RESUMO

Cereal powdery mildews are major pathogens of cultivated monocot crops, and all are obligate biotrophic fungi that can only grow and reproduce on living hosts. This lifestyle is combined with extreme host specialization where every mildew subspecies (referred to as forma specialis) can only infect one plant species. Recently there has been much progress in our understanding of the possible roles effectors play in this complex host-pathogen interaction. Here, we review current knowledge on the origin, evolution, and mode of action of cereal mildew effectors, with a particular focus on recent advances in the identification of bona fide effectors and avirulence effector proteins from wheat and barley powdery mildews.


Assuntos
Ascomicetos/metabolismo , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/genética , Hordeum/metabolismo , Interações Hospedeiro-Patógeno , Triticum/metabolismo
12.
New Phytol ; 217(2): 713-725, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044534

RESUMO

Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/genética , Ascomicetos/ultraestrutura , Basidiomycota/ultraestrutura , Transporte Biológico , Celobiose/análogos & derivados , Celobiose/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicolipídeos/farmacologia , Hordeum/ultraestrutura , Modelos Biológicos , Fenótipo , Fotossíntese , Transcriptoma/genética
13.
Front Plant Sci ; 8: 192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243250
15.
PLoS One ; 11(10): e0163379, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711117

RESUMO

The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus's agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Cucurbita/microbiologia , Perfilação da Expressão Gênica , Ascomicetos/metabolismo , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
16.
Sci Rep ; 6: 35738, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27760994

RESUMO

Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per µg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening.


Assuntos
Meios de Cultura/química , Competência de Transformação por DNA/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores Biológicos/metabolismo
17.
Front Plant Sci ; 7: 123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26913042

RESUMO

The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale ("-omics") approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various -omics technologies.

18.
J Agric Food Chem ; 64(7): 1520-7, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26820976

RESUMO

A Citrobacter strain (WYE1) was isolated from a UK soil by enrichment using the glucosinolate sinigrin as sole carbon source. The enzyme myrosinase was purified using a combination of ion exchange and gel filtration to give a pure protein of approximately 66 kDa. The N-terminal amino acid and internal peptide sequence of the purified protein were determined and used to identify the gene, which, based on InterPro sequence analysis, belongs to the family GH3, contains a signal peptide, and is a periplasmic protein with a predicted molecular mass of 71.8 kDa. A preliminary characterization was carried out using protein extracts from cell-free preparations. The apparent KM and Vmax were 0.46 mM and 4.91 mmol dm(-3) min(-1) mg(-1), respectively, with sinigrin as substrate. The optimum temperature and pH for enzyme activity were 25 °C and 6.0, respectively. The enzyme was marginally activated with ascorbate by a factor of 1.67.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citrobacter/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Citrobacter/classificação , Citrobacter/genética , Citrobacter/isolamento & purificação , Estabilidade Enzimática , Glicosídeo Hidrolases/genética , Cinética , Peso Molecular , Família Multigênica , Microbiologia do Solo
19.
J Proteome Res ; 15(3): 826-39, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26813582

RESUMO

There are over 500 candidate secreted effector proteins (CSEPs) or Blumeria effector candidates (BECs) specific to the barley powdery mildew pathogen Blumeria graminis f.sp. hordei. The CSEP/BEC proteins are expressed and predicted to be secreted by biotrophic feeding structures called haustoria. Eight BECs are required for the formation of functional haustoria. These include the RNase-like effector BEC1054 (synonym CSEP0064). In order to identify host proteins targeted by BEC1054, recombinant BEC1054 was expressed in E. coli, solubilized, and used in pull-down assays from barley protein extracts. Many putative interactors were identified by LC-MS/MS after subtraction of unspecific binders in negative controls. Therefore, a directed yeast-2-hybrid assay, developed to measure the effectiveness of the interactions in yeast, was used to validate putative interactors. We conclude that BEC1054 may target several host proteins, including a glutathione-S-transferase, a malate dehydrogenase, and a pathogen-related-5 protein isoform, indicating a possible role for BEC1054 in compromising well-known key players of defense and response to pathogens. In addition, BEC1054 interacts with an elongation factor 1 gamma. This study already suggests that BEC1054 plays a central role in barley powdery mildew virulence by acting at several levels.


Assuntos
Hordeum/química , Interações Hospedeiro-Patógeno , Proteínas de Plantas/imunologia , Mapeamento de Interação de Proteínas/métodos , Ascomicetos/patogenicidade , Proteínas Fúngicas/toxicidade , Proteínas de Plantas/análise , Ligação Proteica , Espectrometria de Massas em Tandem , Virulência , Leveduras/patogenicidade
20.
Mol Plant Pathol ; 17(4): 625-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26238194

RESUMO

The investigation of obligate biotrophic pathogens, for example Blumeria graminis, presents a number of challenges. The sensitivity of many assays is reduced because of the presence of host material. Furthermore, the fungal structures inside and outside of the plant possess very different characteristics. Normalization genes are used in quantitative real-time polymerase chain reaction (qPCR) to compensate for changes as a result of the quantity and quality of template material. Such genes are used as references against which genes of interest are compared, enabling true quantification. Here, we identified six potential B. graminis and five barley genes for qPCR normalization. The relative changes in abundance of the transcripts were assayed across an infection time course in barley epidermis, in B. graminis epiphytic structures and haustoria. The B. graminis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and histone 3 (H3) genes and the barley GAPDH, ubiquitin (UBI) and α-tubulin 2B (TUBA2B) genes were optimal normalization controls for qPCR during the infection cycle. These genes were then used for normalization in the quantification of the members of a Candidate Secreted Effector Protein (CSEP) family 21, a conidia-specific gene and barley genes encoding putative interactors of CSEP0064. The analysis demonstrates the importance of identifying which reference genes are appropriate for each investigation.


Assuntos
Ascomicetos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes de Plantas , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...